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Abstract
The existence and stability of bound states (BSs) of solitary excitations in the
two-dimensional discrete nonlinear Schrödinger lattice are considered. Stable
BSs of two or three solitons are categorized according to their vorticity S (S = 0
corresponds to ordinary pulses, while S = 1 corresponds to discrete vortex
solitons). Interactions of S = 0 solitons are found to have clear particle-like
characteristics, which can be very accurately predicted in the framework of the
perturbation theory that we develop. Triangular bound states of three solitons
are also constructed, and particle-like characteristics in their behaviour are
followed in numerical experiments. Finally, stable bound states of two vortex
solitons, and S = 0–1 stable complexes are constructed. For the latter state,
we find a weak dependence of the interaction-generated stability eigenvalue on
the distance between the two solitons.

PACS numbers: 05.45.Yv, 05.50.+q, 03.65.−w

1. Introduction

The discrete nonlinear Schrödinger (DNLS) equation is a benchmark system for studies of
dynamics in Hamiltonian nonlinear lattice models. Physical realizations of such systems
include local denaturation of the DNA double strand [1], materials in glassy states [2], complex
electronic materials [3], as well as bundles of optical fibres or waveguides [4–7].

Recent experimental work [3, 8–10] has greatly increased the interest in these systems,
stimulating theoretical efforts aimed at understanding the behaviour of basic models of the
DNLS type. An issue of particular interest is the possibility of energy trapping and localization
in intrinsic localized modes (ILMs), which are also referred to as discrete breathers [11].
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Even though some theoretical methods and results concerning ILMs apply to
multidimensional lattices (e.g., their proof of existence in [12]), most theoretical techniques
have been developed for treating the problem in one dimension (1D). Nevertheless, a few
numerical and analytical works targeted 2D nonlinear lattices of the Fermi–Pasta–Ulam
(FPU) [13, 14], Klein–Gordon (KG) [15, 16], and DNLS [17–24] types. Some systems in
3D were also considered [25].

In this work, we aim to explore an aspect of higher- (in particular, two-) dimensional lattice
dynamics that was not examined in these previous works, namely, a possibility of formation
of stable multi-soliton bound states (BSs). In part, this extends the work initiated in [19, 26],
which addresses the construction and stability of solitary excitations in multi-dimensional
nonlinear lattices, as well as recent work on multiple-pulse bound states in 1D lattices [27,28].
The study will involve both an analytical approach via the soliton perturbation theory, and
numerical simulations of the formation and stability of multi-soliton BSs.

The study of this problem in the framework of the DNLS model is suggested by its
ubiquity in applications. However, the general results obtained below are expected to be valid
for nonlinear KG lattices too—at least, within the spatial and temporal scales for which the KG
lattice equations may be approximated by the corresponding DNLS envelope equations [29].
This is true for the KG lattices with soft nonlinearities, for which general dynamical features
have been shown (see, e.g., [30, 31]) to be the same as in the envelope equations, including
interactions between solitons and between solitons and lattice phonons.

For KG lattices with hard nonlinearities and/or FPU chains, such extensions are not a
priori obvious, and should be justified by detailed numerical comparisons. In particular, the
interactions between solitons and lattice phonons in the models of the latter class are different
from those in DNLS systems [30].

The solitary pulses whose bound states are considered in this work include ordinary
localized 2D pulses, which we call S = 0 solitons, and discrete localized vortices (which will
be called S = 1 solitons, S standing for the soliton’s ‘spin’). The latter ones were originally
discussed in [12,32], and then constructed for KG [16] and DNLS [24] lattices, and identified
as stable objects in the case of very strong discreteness. Recently, these modes were revisited
in [26], where a detailed stability analysis has been performed.

The paper is structured as follows: in sections 2 and 3, analytical and numerical results
for BSs of S = 0 solitons are presented. In section 4, bound complexes of S = 0 with S = 1
solitons, as well as BSs of S = 1 solitons, are considered. Only numerical results are given
for the latter types of BSs, which are found far from the continuum limit, where the validity
of the perturbation theory is questionable.

2. Bound states of zero-spin solitons: analytical considerations

2.1. The model

The 2D DNLS equation is

iu̇m,n + C�2um,n + |um,n|2um,n = 0 (2.1)

where C = 1/h2 is the coupling constant (h is the lattice spacing), and �2um,n =
um+1,n +um,n+1 +um,n−1 +um−1,n − 4um,n is the 2D discrete Laplacian. As in the 1D case [27],
the consideration of the BS problem makes it necessary to have analytical approximations for
its two ingredients: a potential of interaction between two solitons, and the (Peierls–Nabarro)
potential of the interaction of a single soliton with the underlying lattice. In practical terms,
this necessity largely restricts us to the quasi-continuum approximation (i.e. to the case of wide
solitons).
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In comparison with the 1D case [27], there exist two additional problems: an exact form
of the 2D soliton in the continuum NLS model is not known, and this soliton is unstable against
weak collapse [21]. The latter problem may be ignored, tacitly assuming that, in fact, we will
be dealing with a ‘sufficiently discrete’ soliton, for which the collapse is already removed by
the discrete character of the model. As concerns the lack of the exact shape of the 2D soliton
in the continuum model, we will use a variational approximation (VA) for it. In fact, we will
need three different versions of VA, as described below.

2.2. The quasi-continuum variational approximation

Generally, a soliton is sought as a stationary solution,

um,n(t) = Um,ne−i�t (2.2)

where the real amplitudes Um,n satisfy an equation

�Um,n + C�2Um,n + U 3
m,n = 0 (2.3)

and the coupling constant C ≡ h−2 is determined by the lattice spacing h. Notice that one of
the two parameters in equation (2.3) can be scaled out; nevertheless, we keep both of them, as
it helps to understand in detail the approach to the continuum limit (h → 0).

The frequency� parametrizes a family of solitons, and it is easy to understand that solitons
exist only if � is negative. The continuum limit for equation (2.3) is

�U + U ′′ + r−1U ′ + U 3 = 0 (2.4)

where the prime stands for d/dr , r = h
√
m2 + n2 being the radial spatial coordinate.

The simplest version of VA for the continuum-limit equation (2.4) is based on the ansatz

U = Ae−κr . (2.5)

It is straightforward to find the following result produced by this version of VA:

A2 = −8� κ2 = −�. (2.6)

Note that a somewhat similar ansatz, Um,n = A exp [−κ (|m| + |n|)], may be applied directly
to the discrete equation (2.3). However, unlike the ansatz (2.5) in the continuum model, the
latter one gives rise to much more cumbersome results than (2.6), so we will not pursue this
possibility below.

As a matter of fact, the ansatz (2.5) is not sufficient to produce a consistent approximation
for the potential of the interaction between two widely separated solitons even in the continuum
model, because the correct asymptotic form of a solution to equation (2.4) at r → ∞ is, as it
is well known,

U ≈ Br−1/2e−κr (2.7)

with some constant B. From the comparison with equation (2.7) it is obvious that the pre-
exponential multiplier r−1/2 is missing in the ansatz (2.5) if one is going to use it as an
asymptotic expression at r → ∞. To fix this inconsistency, one may try to use a more
sophisticated ansatz, for instance,

U = B (r0 + r)−1/2 exp (−κr) (2.8)

with an extra variational parameter r0. However, this ansatz is not analytically tractable.
Therefore, we will postulate that the amplitude B in the asymptotic expression (2.7) is related
to A from equation (2.5) as follows:

B = cκ−1/2A (2.9)
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where c is a ‘phenomenological’ numerical constant, while the multiplier κ−1/2 is added here
to provide for the correct dimension of the amplitudes.

A correct calculation of the potential of the interaction between an isolated soliton and
the underlying lattice demands an ansatz different from both ones (2.5) or (2.8), as they have
a cusp at r = 0, which would be a major drawback in the consideration of the soliton–
lattice interaction. To remove the artificial cusp, one can introduce an ansatz A sech(κr),
cf the expression (2.5); however, the latter one is intractable. Therefore, the only practical
possibility to address the soliton–lattice interaction is to use the Gaussian ansatz,

U = α exp(−µr2). (2.10)

An easy VA-based calculation then yields

α2 = −4� µ = −2� (2.11)

(recall that � < 0). Of course, the Gaussian ansatz has a wrong asymptotic form at r → ∞,
but this feature is not crucial for the soliton–lattice interaction, unlike the interaction between
two solitons.

2.3. The potentials of the soliton–soliton and soliton–lattice interactions

2.3.1. The soliton–soliton interaction. The interaction between widely separated solitons
is determined by their asymptotic forms. Once we adopt the form (2.7), it is possible to
apply a general method for the derivation of the interaction potential developed (for two- and
three-dimensional solitons) in [33]. The final expression for the interaction potential is

Uint(L, φ) = −2B2
√

2πκ/L exp (−κL) cosφ (2.12)

where B and κ have exactly the same meaning as in the asymptotic expression (2.7), while L

and φ are the separation and phase difference between the centres of two identical solitons (i.e.
those having the same amplitudeB in the expression (2.7)). We stress that the expression (2.12)
is correct irrespective of the correctness of the various versions of VA for an isolated soliton.

Using the interaction potential (2.12) and taking into account the kinetic part of the
underlying Lagrangian, one can derive dynamical equations governing the interaction of two
widely separated solitons. First of all, it is possible to derive an evolution equation for the
relative phase φ. After simple manipulations, it takes the form

φ̈ = (c2/2)A2
√
κ/(2πL) exp (−κL) sin φ (2.13)

where c is the same positive constant as in equation (2.9), and the overdots stand for time
derivatives. From equation (2.13) it immediately follows that only the bound state with the
phase difference φ = π may be stable, which is the same conclusion as in the 1D case [27].

After fixing this value of φ, the interaction potential (2.12), as a function of the separation
L, becomes

Uint(L) = 2B2
√

2πκ/L exp (−κL) (2.14)

which corresponds to repulsion between the two solitons.

2.3.2. The soliton–lattice interaction. The potential of the interaction of the quasi-continuum
2D soliton with the underlying lattice can be calculated in essentially the same way as in [27]
for the 1D case. As mentioned above, to do it one should use the Gaussian version of VA based
on equations (2.10) and (2.11) (if, instead, one tries to use the approximation of the type (2.5)
with a cusp at r = 0, the result will be that the interaction potential is not exponentially small
in the quasi-continuum limit h → 0, which is definitely incorrect).
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Thus, using the Gaussian ansatz, and assuming that the soliton’s centre is located at a
point with coordinates (η, ξ), an eventual expression for the soliton–lattice interaction can be
obtained in the following form:

Ulatt (η, ξ) = −2π |�| exp

(
− π2

8|�|h2

) [
cos

(
2π

h
η

)
+ cos

(
2π

h
ξ

)]
(2.15)

which contains the natural exponential smallness in the lattice spacing h.

2.4. The final result

The minimum possible distance Lmin between the solitons in a stable stationary quasi-
continuum state can be found from the balance condition for the repulsion force generated
by the potential (2.12) and pinning force generated by the potential (2.15). Using the fact that
both potentials are exponentially small, in the lowest approximation we can easily find

Lmin ≈ π2/
(
8|�|3/2h2

)
. (2.16)

An additional remark is that the smallest separation between two solitons is realized if the
vector connecting their centres is parallel to the diagonal of the underlying square lattice.

Thus, it is possible to develop the asymptotic description of the bound states of two 2D
S = 0 solitons at essentially the same level as in the 1D case [27]. A simple estimate for the
maximum possible value of Lmin, using data from [19], shows that this value is typically (for
lattice spacings for which single pulses exist) of the order of a few lattice spacings. However,
in that case, the pulses are not well separated anymore, and the estimate is not reliable. This
statement agrees with our finding that, for typical values of h, well-separated pulse pairs were
always found to exist as solutions of the 2D DNLS equation. For very small separations
between the pulses, 2D generalizations of twisted localized modes (see [26,34–38]) exist, see
below. The existence and stability ranges for these modes were considered in detail (for two
dimensions) in [26, 38].

3. Bound states of zero-spin solitons: numerical results

The remark given at the end of the previous section will be quite helpful in understanding
results presented in this section for BSs constructed by the concatenation of two or three zero-
vorticity pulses. To create such states, we solve equations (2.3) on a lattice of a sizeN×N with
an initial guess in the form of a two-soliton state, taken as suggested by the analytical results
presented above. Typically, in our computations N varied between 20 and 40, which turns out
to be quite sufficient for the comprehensive study of the bound states. We subsequently solved
equations (2.3) by means of Newton iteration until a convergence criterion was met (which
most commonly required that the L2 norm of the error was smaller than a tolerance ∼10−8).
An alternative method for the solution of the equations was used in [19].

Once a stationary solution Um,n had been identified, numerical linear analysis of its
stability was performed. This was done by substituting um,n = exp(−i�t)(Um,n + εvm,n)

into equation (2.1), which yields the linearized equation (see, e.g., [39, 40])

iv̇m,n + C�2vm,n + 2|Um,n|2vm,n + U 2
m,nv

∗
m,n + �vm,n = 0 (3.17)

the asterisk standing for the complex conjugation. Further, the substitution of vm,n =
am,n exp(−iλt) + bm,n exp(iλ#t) into equation (3.17) leads to an eigenvalue problem for the
stability exponent λ, based on the stationary equations

λam,n = −C�2am,n − 2|Um,n|2am,n + �am,n − U 2
m,nb

#
m,n (3.18)

−λb#m,n = −C�2b
#
m,n − 2|Um,n|2b#m,n + �b#m,n − (U ∗

m,n)
2am,n. (3.19)
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Figure 1. The left and right panels show an unstable pulse configuration with zero phase difference
between two-dimensional pulses, and the spectrum of its eigenvalues, as produced by numerical
calculations at � = −0.5 and C = 0.25. The presence of an (interaction-generated) pair of
imaginary eigenvalues signals the presence of the instability.
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Figure 2. The same as in figure 1, but for a stable configuration withπ phase difference between the
pulses. The inset is a blowup in the vicinity of the origin of the spectral plane, which demonstrates
the true stability of this bound state.

Obviously, real eigenvalues λ correspond to neutrally stable oscillatory eigenmodes, while the
presence of eigenvalues with Im λ = 0 signals an instability. Due to the Hamiltonian nature
of the system, λ#,−λ,−λ# are also eigenvalues if λ is an eigenvalue.

We now turn to the presentation of numerical results. We have found that BSs with the
zero phase difference between two identical solitons always possess an unstable eigenvalue that
renders such complexes unstable. An example of this is shown in figure 1, where the left panel
shows the configuration which is a solution of equations (2.3), while the right panel shows
the corresponding set of the eigenvalues λ, where it can be clearly seen that the interaction
eigenvalue is unstable (imaginary). In contrast, for pulses with the opposite ‘parity’ (i.e. with
a phase difference π between them), we observe in figure 2 that the interaction eigenvalues
are stable (see, in particular, the inset in the right panel of figure 2). Such a stable ‘up–
down’ configuration is shown in the left panel of figure 2. These results comply with their 1D
counterparts (see i.e. [27]), as well as with what is predicted by the 2D VA developed in the
previous section.
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Figure 3. The interaction-induced eigenvalue
for a bound state of two pulses with π phase
difference versus the distance L between them,
for � = −0.5, C = 0.25. The numerical-data
points are shown by circles, while the least-
squares fit described in the text is depicted by
the solid line. Notice the deviation from the
least-squares fit (which, in fact, is very close to
the theoretical prediction) at very small values
of L, where the theory is no longer valid (see
text).

One might worry about a possibility of collisions of the interaction-generated eigenvalues
with other ones, which could lead to oscillatory instabilities [37,41,42]. However, as it was ar-
gued in [28], the condition L > Lmin precludes collisions between the interaction eigenvalues
and translational ones (those which correspond to the breaking of the translational invariance).
We have concluded that this condition is typically not very stringent. On the other hand, for very
discrete cases, an additional possibility is a collision with eigenvalues that are at the edge (or
have just bifurcated from the edge) of the continuous spectrum. A criterion for the avoidance of
collisions of the latter type is

√
Uint < |�| (since the edge of the continuous spectrum is at� =

|�|). It has been found for 1D problems [28,43], and also for 2D in [26,38], that such collisions
with the band edge are only possible for twisted-like modes for which the ‘pulse separation’ is
one or, maximum, two lattice sites. In fact, in the latter case, one cannot really speak of sepa-
rated pulses. Hence, in the cases of well-separated pulses considered herein, such collisions do
not occur, and the configuration is linearly stable for any relevant value of the lattice spacing.

To further test the predictions of the perturbation theory based on the VA, we computed
the interaction-generated eigenvalue λi versus the distance between the pulses. Results are
shown in figure 3 for � = −0.5 and C = 0.25 (although the validity of the conclusions was
also tested for other parameter values). It is easy to show, using the results from the previous
section, that the interaction eigenvalue can be estimated as follows:

λi ∼
√
Uint ∼ L−1/4 exp(−κL/2) (3.20)

where Uint is the interaction potential (2.14). The least-squares fit of a curve λi =
ar−b exp(−cr), shown by the solid line in figure 3, to the numerically found values of λi yields
b = 0.247 889 and c = 0.340 191, which are fairly close to the analytically predicted values
b = 0.25 and c = 0.353 553 in equation (3.20), small discrepancies being well justifiable
by the generally approximate and, and, in particular, quasi-continuum nature of the analytical
calculation, and, in a part, also by details of the numerical computations (such as, for instance,
the effect of domain boundaries).

A principal conclusion suggested by the above results is the particle-like character of the
interaction between the pulses even in the regime of strong discreteness (notice that C = 0.25
corresponds to the lattice spacing h ≡ C−1/2 = 2). The validity of equation (3.20) (and hence
of equation (2.14) in section 2) has been verified for different values of the lattice spacing. An
analogous feature, namely, slightly different but still particle-like behaviour of the interaction
in the 1D DNLS, has been discussed in section 4 of [27].
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For small distances L between the two pulses, the theoretical prediction is expected to
break down as is observed for small L in figure 3. This is due to the fact that the interaction
eigenvalues become of the same order of magnitude as the translational ones, hence they
interact and, eventually (with the decrease of L) collide, giving rise to quartets of eigenvalues
that bear oscillatory instabilities, as mentioned above. Notice that for the two left-most points
of the graph in figure 3 the configuration is unstable due to the appearance of such a Hamiltonian
Hopf bifurcation.

Typically, we have found that deviations from the variational prediction (due to the
interaction between different eigenvalues) begin to occur for the ratio L/Lmin taking values,
typically, between 1 and 10. For instance, in the case shown in figure 3, these deviations start
to occur for L/Lmin ≈ 8.

We have also tested the validity of equation (2.15). This was done by fixing |�| = 1 and
probing the energy of the soliton–lattice interaction as a function of the coupling constant.
The energy was measured by computing the energy of a stable steady state (a pulse whose
centre is placed on-site in both directions) and subtracting the energy of an unstable steady
state (the pulse centred between sites in both directions [19]). We have found that for h < 0.9,
the approach to the continuum limit (in which collapse effects appear) deteriorates agreement
between the theoretical and numerical results. Similarly, for h > 2, the lattice becomes very
discrete and the quasi-continuum approximation for the solution no longer is a good one.
For 0.9 < h < 2, we have numerically tested the agreement, using, as a measure for the
quantitative comparison, the absolute value of the slope of the (semilog) plot of the soliton–
lattice interaction energy versus the coupling constant C. For |�| = 1, this slope should be,
according to equation (2.15), s ≈ 1.2337. Numerically, we have found s ≈ 1.2436, hence
the relative error is ≈0.008. We thus conclude that the quasi-continuum approximation gives
very good agreement with the numerical results in the range of 0.9 < h < 2.

However, features indicating discreteness effects, if compared to the quasi-continuum
approximation, are visible too. One of them is a bifurcation of two intrinsic modes of the
solitary wave from the edge of the continuum spectrum. Such bifurcations have been identified
as arising from the discreteness acting as a singular perturbation added to the continuum model
in [44–48]. Exponential, as well as power-law, dependences of the bifurcation effects on the
lattice spacing have been assessed in those works. In figure 4, we numerically monitor the
variation of the two eigenvalues bifurcating from the band edge—not versus the lattice spacing,
but rather as a function of the separation between individual pulses that form the BS. Our
numerical results indicate that:

• As the pulse separation increases (i.e. as the state gradually goes over into a pair of
noninteracting pulses), the two eigenvalues approach an asymptotic value for isolated
pulses, which depends solely on the lattice spacing (as predicted in the above-mentioned
works).

• However, as the separation between the two individual pulses decreases, an effect of the
interaction shows itself in the opposite variation of the two eigenvalues, eventually driving
one of them back into the phonon band. It should be noted here that after returning
to the phonon band, these eigenvalues will no longer pertain to localized modes. It is
clear that since these eigenvalues bifurcated from the continuous spectrum, they bear
the Krein signature of the continuous-spectrum eigenvalues (see, e.g., [27, 32, 49] and
references therein for an explanation of the Krein signature and its relevance). Hence,
upon collision with the continuous-spectrum eigenvalues (when the former return to the
band), the eigenvalues will just go through each other [27] and no oscillatory instability
will be present.
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10 15 20 25 30 35
–0.02

–0.01

0

0.01
λ b– 

λ e

L

Figure 4. The (almost symmetric) variation of the two pairs of eigenvalues bifurcating from the
bottom edge of the phonon band, as a function of the distance between the pulses (top-left panel).
The bifurcating eigenvalues λb are shown with respect to the band edge λe = |�|; therefore,
zero-crossing by one of the two eigenvalues shown here means that it returns to the phonon band.
Numerical-data points for the two eigenvalues are shown by circles and stars, respectively, while
the curves (solid and dashed) just connect the points to help follow systematic evolution of the
eigenvalues. The top-right and bottom panels show a typical set of the corresponding eigenfunctions
(the top-right panel for the smaller pair of the eigenvalues—shown by circles in the top-left panel—
and the bottom panel for the larger pair of eigenvalues—shown by stars in the top-left panel). Shown
is am,n; b#m,n demonstrates a similar behaviour.

• The exponential smallness of the interaction effects, expected in the case of the large
separation between the pulses, is not obvious in the variation of these eigenvalues with
respect to L.

To further probe the particle-like nature of the interaction, and also to ensure that (stable)
bound states consisting of more than two pulses exist, we have performed the following triangle
numerical experiment: three pulses were placed along a diagonal of the lattice. As is obvious
from the previous results for the interaction of two pulses in 2D, as well as is suggested
by the 1D DNLS models [27, 28], only . . . –up–down–up–down–. . . multipulse arrays, with
the phase difference π between adjacent pulses, can be stable. Also, since we now have three
pulses, we will have two small interaction-generated eigenvalues (more generally, for N -pulse
configurations, N −1 such eigenvalues must be present). A stable three-pulse configuration is
shown in figure 5. The left panel shows the configuration itself, while the right one demonstrates
the results of the linear-stability analysis, with the inset clearly showing the presence of two
interaction-induced eigenvalues in the neighbourhood of the origin of the complex λ plane.
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Figure 5. The triangle experiment: the straight configuration (i.e. θ = 180◦) (left panel), and the
corresponding eigenvalues (right panel). The inset clearly indicates the presence of two interaction-
generated eigenvalues.
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Figure 6. The triangle experiment: two interaction-generated eigenvalues versus the angle between
the directions from the centre of the middle ‘down’ pulse to two ‘up’ pulses at the edges. Initially
(for θ = 180◦, see the previous figure), the pulses are aligned along a lattice diagonal. Gradually,
the middle pulse is moved along the perpendicular diagonal, hence a triangle is formed. The
values of the first eigenvalue are shown by dots connected by the solid line if they are real (i.e.
stable), and by stars connected by the dashed line if they are imaginary (i.e. unstable). The second
interaction-generated eigenvalue is always stable in the case considered, and it is shown by the
plus symbols also connected by the solid curve. As remarked in the text, as soon as the triangle
becomes equilateral, the configuration becomes unstable, as the ‘up–up’ destabilizing interaction
overcomes the stabilization effect of the ‘up–down’ interactions.

We follow the behaviour of these two interaction eigenmodes as a function of the angle
(starting from 180◦ downwards) of the triangle formed when moving the intermediate pulse
down along the diagonal which is perpendicular to the one along which the three pulses
were originally aligned. The variation of the interaction eigenvalues is shown in figure 6. A
noteworthy effect is that the leading eigenvalue becomes unstable immediately as the triangle
becomes equilateral. This is a strikingly straightforward demonstration of the particle-like
nature of the interaction characteristics between the pulses (even in a strongly discrete case—
in this example, � = −0.5 and C = 0.1, i.e. h = √

10), as it shows that, as soon as the
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destabilizing interaction of the ‘up–up’ pair of the pulses overcomes the stabilizing effect
of the ‘up–down’ interactions (the distance between the unipolar pulses is smaller than that
between the opposite-polarity ones if θ < 60◦), the instability sets in.

4. Bound states involving vortex solitons

Recently, stable solitary waves with an intrinsic vorticity in the DNLS system were constructed
in [26]. This was accomplished by constructing a discretized configuration in which the field
pattern mimicked the dependence on the angular variable ∼ exp(iSθ), characteristic of solitons
with spin S in continuum models [50, 51]. In particular, this implies that the angular depen-
dences of ReUm,n and Im Um,n resemble, respectively, cos(Sθ) and sin(Sθ). Hence the real
part of the discrete two-dimensional stationary field should be odd in x, while the imaginary
part should be odd in y. Following these expected symmetries, a dual-twisted ansatz, in which
ReUm,n = −Im U−m,n and Im Um,n = − Im Um,−n (inspired by the ‘twisted localized modes’
recently found in the 1D DNLS model [34–37]), was used as a starting point for the Newton
iteration scheme that had converged to a solution of equation (2.3) representing the discrete
localized (‘bright’, in terms of nonlinear optics [50, 51]) vortex solution with S = 1. Direct
dynamical tests have further demonstrated that the localized discrete vortex with S = 1 in the
2D DNLS model can be stable (vortices with S > 1 were also obtained, but they were found
to be unstable). Naturally, as it is discussed below (and also in [26]), the stability is true only
for weak coupling (i.e. small values of C).

Two drastic differences of the localized vortices in the DNLS model from their counterparts
in various continuum models should be stressed. First, the axial symmetry of the continuous 2D
NLS equation is broken in the discrete model, hence the vorticity is an intrinsic characteristic
of the 2D discrete soliton which cannot be considered as an obvious topological invariant. Sec-
ond, all the vortices are unstable not only in the continuum 2D NLS model, where the instability
is a straightforward consequence of the fact that this model is subject to the (weak) wave col-
lapse, but also in most other continuum models. For instance, they are strongly unstable against
azimuthal perturbations in the model with the quadratic nonlinearity [50], where the collapse is
absent, and zero-vorticity solitons are perfectly stable (very recently, the first example of stable
localized vortices, alias vortex rings, with S = 1 and 2, has been found in a continuum model
combining the quadratic and self-defocusing cubic nonlinearities [51]). Therefore, the exis-
tence of stable vortices in the DNLS lattice is an important property, and investigation of com-
plexes involving these vortices, which is the subject of this section, is an interesting problem.

The main finding, produced by means of the Newton iterations followed by linear stability
analysis, and finally confirmed by direct numerical integration of the full equation (2.1), is that
bound states of S = 0 and 1 discrete solitons do exist, and they can be stable within the
stability range of the isolated S = 1 discrete vortex solitons, i.e. for C < C

(1)
cr ≈ 0.13 (the

S = 0 soliton is stable in its own region, C < C
(0)
cr ≈ 0.32) [26]. An example of the stable

bound state of S = 0 and 1 solitons is shown in figure 7 in the top-left panel, while its linear
stability is illustrated by the top-right panel.

The eigenvalue pair closest to the origin of the spectral plane corresponds to an interaction-
generated eigenmode. The left and right bottom panels show, respectively, the real and
imaginary components of the stationary field Um,n. Such configurations exist when the
distances between the S = 0 and the 1 solitons are about 3–5 sites or more (in the range
of the coupling-constant values considered here, where the S = 1 pulse is linearly stable). In
fact, even when instabilities arise for such values of the distance and coupling constant, they
are extremely weak (typically at the level of numerical precision), hence they may be relevant
only to much larger timescales than those considered here.
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Figure 7. An S = 0–1 bound state. The absolute value of the corresponding solution to
equations (2.3) is shown in the top-left panel. The results of linear stability analysis indicating
the absence of unstable eigenmodes are shown in the top-right panel. The real and imaginary parts
of the solution are shown in the bottom-left and bottom-right panels, respectively.

A bound state of two S = 1 solitons is shown in figure 8. The top-right panel again
illustrates the linear stability, while the bottom panels show the real and imaginary parts of the
stationary field. A novel result is that the bound state of two identical S = 1 vortex solitons
with the zero phase difference (as those shown in figure 8) are stable, in contrast to what is
the case for the S = 0 solitons (recall they must have the phase difference π to form a stable
bound state). A qualitative explanation to this difference is suggested by the analogy to the
1D constituents of the vortices. In particular, the configurations of the real and imaginary
parts of the stationary field corresponding to the bound state (shown in the bottom panels of
figure 8) are such that the ‘down’ pulses contained in them are screening the destabilizing
interaction between the ‘up’ pulses, and vice versa. The same argument can be used to justify
the stability of configurations consisting of two π out of phase S = 1 modes. We have found
that a minimum relative distance, approximately the same as in the case of the (S = 0–1) BS,
is necessary for the formation of the BSs of two S = 1 solitons is also required here. For
distances larger than this minimum distance, such configurations were typically found to be
stable.

Finally, concerning the interaction-generated eigenmodes of such bound states, we will
only present some preliminary conclusions here. A problem in the study of these modes is
that, due to the larger effective size of the S = 1 solitons, it is harder to accurately analyse



Bound states of two-dimensional solitons in the discrete nonlinear Schrödinger equation 9627

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Im
(λ

)

Re(λ)

–0.1 –0.05 0 0.05 0.1

–0.1

–0.05

0

0.05

0.1

Im
(λ

)

  Re(λ)

Figure 8. The same as in figure 7 for a bound state of two S = 1 discrete vortex solitons.

the dependence of the interaction-generated eigenvalues on the distance between the solitons,
especially in the case of two S = 1 vortices. For this reason, we will not deal with the latter
case, for which there is a direct analytical prediction of the stability of the bound state with
zero phase difference, and instability of the state with phase difference of π , following from
the quasi-continuum approximation [33]. We therefore only consider the bound state of the
S = 0 and 1 solitons. With the change of the distance between them, a weak, angle-dependent
variation of the interaction-generated eigenvalue was observed, which is detailed in table1. An
additional problem that hinders the systematic observation of such eigenvalues is the fact that
the bound states in question exist only for small values of the coupling constant, C < C

(1)
cr , at

which the S = 1 soliton is stable by itself.

5. Conclusion

In this work we have addressed, analytically and numerically, the problem of formation of
multi-pulse bound states in 2D dynamical lattices of the DNLS type. This extends previous
results for the formation of isolated pulses in such media, and the results regarding the formation
of multi-soliton bound states in 1D lattices. Our essential conclusions are that such stable bound
states of two or more zero-spin pulses exist indeed, and stable two-soliton bound states with
one or both solitons having spin S = 1 are also possible. Another noteworthy result is the
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Table 1. Variation of the interaction-generated eigenvalue of the (S = 0–1) bound statea.

(n1,m1) (n2,m2) λ × 109

(10, 10) (17, 17) 0.207(919)
(10, 11) (17, 17) 0.331(314)
(10, 12) (17, 17) 0.136(507)
(11, 11) (17, 17) 0.280(401)
(11, 12) (17, 17) 0.431(588)

a The coordinates (n1,m1) of the centre of the S = 0 soliton are varied, while the position (n2,m2)

of the S = 1 soliton is kept fixed. The third column shows the interaction-generated eigenvalue (the
last three digits in the parenthesis in this column indicate the next decimal digits in the value of λ).
The data support a (preliminary, for reasons explained in the text) conclusion that the interaction-
generated eigenvalue varies weakly with the separation between the two solitons constituting the
bound state. Notice also that the non-monotonic dependence of the eigenvalue versus the separation
suggests that the eigenvalue is sensitive to the natural anisotropy of the lattice model.

elucidation of the particle-like character of the interaction between S = 0 pulses, even in the
strongly discrete case. A consequence of the 2D character of the soliton–soliton interaction
in the system is the presence of the power-law pre-exponential multiplier in the effective
interaction potential (2.14), which affects the estimate of the interaction-generated stability
eigenvalue (3.20) of the bound state. This prediction has been found to be in very good
agreement with direct numerical results. Other numerical experiments, such as those with the
triangle configuration, were also performed, providing additional insight into the formation,
stability and behaviour of multi-pulse bound states in the 2D nonlinear lattices.

Due to the stabilizing effect of the discreteness, the DNLS model with the cubic
nonlinearity, which is a generic dynamical model, and also has direct applications to various
physical systems (for instance, to the light propagation in a bundle of nonlinear optical fibres)
provides an ideal probing ground for the generation of various multi-pulse coherent patterns
and study of their properties and interactions.
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